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Abstract

Background: Multi-site neuroimaging offer several benefits and poses tough challenges in the drug development
process. Although MRI protocol and clinical guidelines developed to address these challenges recommend the use of
good quality images, reliable assessment of image quality is hampered by the several shortcomings of existing
techniques.

Methods: Given a test image two feature images are extracted. They are grayscale and contrast feature images. Four
binary images are generated by setting four different global thresholds on the feature images. Image quality is
predicted by measuring the structural similarity between appropriate pairs of binary images. The lower and upper
limits of the quality index are 0 and 1. Quality prediction is based on four quality attributes; luminance contrast,
texture, texture contrast and lightness.

Results: Performance evaluation on test data from three multi-site clinical trials show good objective quality
evaluation across MRI sequences, levels of distortion and quality attributes. Correlation with subjective evaluation by
human observers is ≥0.6.

Conclusion: The results are promising for the evaluation of MRI protocols, specifically the standardization of quality
index, designed to overcome the challenges encountered in multi-site clinical trials.

Keywords: Magnetic resonance imaging (MRI), Brain MRI, Image quality, Image moment, Grayscale feature image,
Local contrast feature image

Background
Brain imaging studies using magnetic resonance imaging
(MRI) system is one of the strongest biomarker candidates
for neurological diseases [1–8]. MRI system is highly flex-
ible. A single MRI system examination can be configured
to generate several image sequences which can potentially
provide high contrast structural information and the con-
nectivity between brain structures [9–11]. The first listing
of MRI as criteria for the diagnosis of multiple sclerosis
and Alzheimer’s diseases was in 2001 and 2010, respec-
tively [12, 13]. Over the years, advances in technology,
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strong collaboration among researchers coupled with
availability of clinical data encouraged modifications
[14–17] to the initial diagnostic criteria. Despite sev-
eral modifications to the initial diagnostic criteria, MRI
criteria maintains a strong position to demonstrate the
dissemination of multiple sclerosis disease in space and
time and the exclusion of other disorders that can mimic
its clinical and laboratory profile [18].
Pharmaceutical companies incorporate multi-center

neuroimaging in the design of clinical trials for the treat-
ment and the monitoring of neurological diseases. Multi-
site clinical trials has several advantages. Main benefit is
the ability to obtainmore neuroimaging data per unit time
across a wide variety of the patient population [19]. Other
benefits include monitoring the progression of disease
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across a geographically, culturally and environmentally
diverse population [20].
Several challenges encountered in multi-center neu-

roimaging studies result from the differences in MRI
system parameters and image reconstruction routines.
Two challenges are the variation of scanner technologies
across the clinical trials sites and the different magnetic
field inhomogeneities produced by a specific MRI model
from the same manufacturer [21, 22]. These challenges
renders acquired data including image quality evaluation
unreliable with high risk of inaccurate diagnosis [20].
There have been proposals to mitigate the effects of

these challenges. They include careful coordination, the
use of standardized phantom studies and strict quality
assurance of recommended imaging protocols across the
clinical trial sites [18, 23, 24]. Another mitigation mea-
sure is to ensure that end points derived from brain MRI
images are subjective and heavily dependent on radiol-
ogist interpretation [25]. This approach is grossly ineffi-
cient in large scale clinical trials where large volume of
data are processed. Conflicting results can result from the
variability and lack of reproducibility in the interpretation
of data by radiologists [2, 26, 27].
Acquisition and reconstruction of MRI image from

k-space data is time consuming relative to other imag-
ing modalities such as X-ray, ultrasound and computed
tomography. The consequences which include patient dis-
comfort and motion-related artifacts significantly limits
the potential to acquire high quality images [28, 29].
At the post-acquisition stage such as multi-center clin-
ical trials, the challenge is centered on standardizing
MRI data from different MRI scanners and different
MRI sequences. Quality evaluation beyond the acquisition
stage is necessary to evaluate the performance ofMRI pro-
tocols developed to mitigate the challenges in multi-site
neuroimaging.
Most proposed quality evaluation methods focus on the

acquisition stage. There are few contributions on post-
acquisition quality evaluation of brain MRI images. They
include [30] which apply analysis of variance (ANOVA)
algorithm to assess the variation of several quality mea-
sures with different levels of distortions. The authors in
[31] combine the detection of artifacts and estimation of
noise level to measure image quality. In [32] null space
analysis and just noticeable difference scanning method
was proposed as a better quality metric compared to root-
mean-square error (RMSE). The popular signal-to-noise
ratio (SNR) is the quality metric adopted in [33]. Recently
the report in [34] propose a new method which pre-
dict brain MRI quality based on five quality attributes.
The attributes are lightness, contrast, sharpness, tex-
ture details and noise. This report provide brief review
of image quality evaluation. Detailed review of generic
approaches to image quality evaluation can be found in

[35, 36]. Review focussed onmedical images is available in
[31, 37, 38].
We share the same opinion in [39, 40] which sug-

gest that the design of application-specific, no-reference
quality evaluation system is more realistic and practi-
cable than the design of generic image quality eval-
uation systems. It will be futile to design a generic
image quality metric because images possess unique
characteristics that distinguish them within and across
different classes. Furthermore current state-of-the-art
generic quality evaluation algorithms will require sig-
nificant modifications before application to medical
images [37].
Shortcomings of current state-of-the-art quality evalua-

tion algorithm justify the need for new approach to quality
evaluation in multi-center clinical trials. The contribution
by [33] which adopt SNR is a full reference method based
on the assumption that there exists a perfect image. In the
real world a perfect image does not exist [37]. There are
many definitions of SNR with no clearly defined range of
quality index. These characteristics makes it difficult to
compare quality measures from different imaging system,
modalities and researchers [41]. Quality indices derived
from SNR does not always correlate with the performance
of observers using the imaging system on the task for
which they are intended [41]. The use of SNR for quality
evaluation can be said to be diagnostically misleading [42]
because it cannot discriminate the quality of two images
that are perceptually dissimilar [32]. The adoption of only
artifacts and noise in [31] are too few attributes to eval-
uate the quality of an image. There are two setbacks for
ANOVA based technique proposed in [30]. They are the
risk of ambiguity in quality measures and the inability to
transform the different levels of distortion into a quality
index [43].
Image quality evaluation is difficult and complicated.

Perceived image quality is influenced by several types of
quality attributes and the different attributes influence
each other [44]. The proposed method follow the three-
step framework reported by Bartleson in 1982 [45]. The
first step identify the most significant quality attributes
of brain MRI images. They are luminance contrast, tex-
ture, texture contrast and lightness. The second step adopt
image moments as global threshold to binarize and cap-
ture structural information contained in grayscale and
contrast feature images derived from brain MRI images.
Image moments have been successfully applied in many
areas of image analysis such as image denoising [46],
speech recognition [47], image normalization [48, 49],
reconstruction [50], feature selection [51, 52], content-
based image retrieval systems [53] and segmentation [54],
[55]. In the third step image quality is evaluated based on
structural similarity between the pair of images derived by
using different moments to binarize each feature image.
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This paper is organized as follows. The next section
is the methods section. It include the setup of the
experiment, problem formulation and implementation
of the algorithm. The results of performance evalua-
tion are presented in “Results” section and discussed in
“Discussion” section. “Discussion” section highlight the
limitations of our proposed method and the future work
to overcome these limitations. “Conclusions” section con-
cludes this report.

Methods
Sources of data
Data used for the performance evaluation of the pro-
posed method were obtained from NeuroRx research
Inc. (https://www.neurorx.com), BrainCare Oy. (http://
braincare.fi/) and the Alzheimer’s disease neuroimaging
initiative (ADNI) database (www.adni.loni.usc.edu).
NeuroRx research Inc. is an international clinical

research organization dedicated to working with the
pharmaceutical industry to facilitate clinical trials of
new drugs for multiple sclerosis (MS) and other neu-
rological diseases. BrainCare Oy (http://braincare.fi/) is
a Tampere University of Technology spin-off company
founded in 2013 to deliver personalized solutions to
improve the quality of life of epilepsy patients. The orga-
nization recently concluded clinical trials for a novel
mobile application and supporting solutions for long-
term monitoring for epileptic patients. The ADNI was
launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological
assessment can be combined to measure the progres-
sion of mild cognitive impairment and early Alzheimer’s
disease.

Test data
The test data consist of three hundred MRI slices
extracted from 15 T2 and 10 T1 MRI volume data. In
the results section we demonstrate the efficacy of our
proposed method with six MRI volume data; three from
NeuroRx, two from BrainCare and one from ADNI. The
dataset from NeuroRx are one T2 weighted and two con-
ventional T1 weighted. Each volume data contain 60 slices
with dimension 256 × 256 pixels and 2.4 mm thickness.
The T2 weighted and one of the T1 weighted MRI data
are without any perceived distortion. The slices in the
other T1 weighted data were originally acquired with
various configurations of bias fields. There are two 50-
slice, T2 weighted data without perceived distortion from
BrainCare Oy. Each slice has dimension 448 × 408 pix-
els and 2.6 mm thickness. The remaining data is T1
magnetization-prepared rapid gradient echo (MPRAGE)

pulse sequence from ADNI. It contains 180 slices. Each
slice has dimension 190×160 pixels and 1.2mm thickness.
Performance evaluation was carried out in six cate-

gories. The first three categories evaluate the data in their
original form of acquisition. They are T2 volume data
without perceived distortion, T1 volume data without per-
ceived distortion and T1 volume data degraded by bias
fields. In the remaining three categories, three different
types of degradation; circular blur, motion blur and Rician
noise at different levels were artificially induced on the test
data.
An image was degraded with circular blur by convolu-

tion with space-varying pillbox function. The parameter
of circular blur is determined from the radial distance, in
pixels, of the pillbox function. Motion blur degradation
was done by a filter which approximates the linear motion
of a camera. Motion blur is defined by linear and angular
distances in pixels and degrees, respectively. Rician noise
level was computed from themagnitude of Gaussian noise
added to the real and imaginary components of the image.
The real and imaginary components of the image are gen-
erated by making two duplicte copies of the image. Rician
noise parameter is defined by the percentage of the maxi-
mum pixel intensity level in the image [56]. The different
levels of circular blur, motion blur and Rician noise degra-
dation were defined by scaling the respective parameters
from 1 to 15.

Subjective Evaluation
In order to determine how our proposedmethod correlate
with the human visual system we conducted subjective
experiments with human observers. The experiment was
aided byQuickEval [57], a web-based tool for psychome-
tric image evaluation provided by the Norwegian Colour
and Visual Computing Laboratory (www.colourlab.no/
quickeval) at the Norwegian University of Science and
Technology, Gjøvik, Norway. The observers are one radi-
ologist and one MRI reader. MRI reader is a trained
professional with experience working on MRI images that
are affected by pathology [33]. Mean opinion score (MOS)
subjective experiment was chosen for the validation study
because it is simple and popular. Mean opinion score is
the average of the quality scores assigned to an image
by multiple viewers [58]. The six categories of the objec-
tive experiment was used for the subjective experiment.
The observer assigns a score between 0 and 100, in steps
of 1 to each slice. In the category of MRI volume data
with artificially induced distortion, each observer was first
presented with an undistorted version of anMRI slice, fol-
lowed by increasing distortion levels of the original slice.
The distorted levels are 5, 10 and 15. The relationship
between our objective results and the score assigned by
human observers was determined using the spearman’s
rank correlation coefficient ρ [59]:

https://www.neurorx.com
http://braincare.fi/
http://braincare.fi/
www.adni.loni.usc.edu
http://braincare.fi/
www.colourlab.no/quickeval
www.colourlab.no/quickeval
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ρ = 1 − 6
∑

d2

n3 − n
(1)

where n, the number of observations is the total number of
slices contained in all the volume data in each category of
the experiment, d is the difference between the two ranks
of each observation.

Notational definitions
Here we explain and define the four binary images derived
from the grayscale and contrast feature images. Each
binary version is identified by a four-word name. The
first three words describe the image moment of the fea-
ture image used as the global threshold to derive the
binary image. The last word describe the original feature
image before it was transformed to the binary domain.
Each binary version is denoted by JMI . The superscript
denote the image moment M that was set as the global
threshold to derive the binary image. The subscript is
the original feature image I before transformation to the
binary domain. Table 1 is a summary of the notational
definitions.

First grayscalemoment grayscale binary image
First Grayscale Moment Grayscale (FGMG) binary image
Jμd
Id is defined as the threshold version of the grayscale
feature image Id at global threshold μd :

Jμd
Id =

{
1 if Id > μd
0 otherwise (2)

where μd is the first moment of the grayscale feature
image. This image can be regarded as the brightness qual-
ity descriptor for the observed image because the number
of bright pixels determines the luminosity of the image.

First contrast moment grayscale binary image
First Contrast Moment Grayscale (FCMG) binary image
Jμc
Ic is defined as the binary version of the grayscale feature
image Id at global threshold μc:

Jμc
Id =

{
1 if Id > μc
0 otherwise (3)

Table 1 Notational definitions for the four binary feature images
used for quality evaluation of brain MRI images

BINARY FEATURE
IMAGE

FEATURE
ACRONYM

FEATURE
NOTATION

THRESHOLD

First Grayscale
Moment Grayscale

FGMG Jμd
Id

(Id > μd)

First Grayscale
Moment Contrast

FGMC Jμd
Ic

(Ic > μd)

First Contrast
Moment Contrast

FCMC Jμc
Ic

(Ic > μc)

First Contrast
Moment Grayscale

FCMG Jμc
Id

(Id > μc)

The bright pixels measures the influence of the brightness
quality attribute on the contrast quality attribute. It deter-
mines the number of grayscale pixels that contribute to
the contrast quality attribute

First contrast moment contrast binary image
First Contrast Moment Contrast (FCMC) binary image
Jμc
Ic is defined as the threshold version of the local contrast
feature image Ic at global threshold μc :

Jμc
Ic =

{
1 if Ic > μc
0 otherwise (4)

where μc is the first moment of the contrast feature
image. This image can be regarded as the texture quality
descriptor for the observed image.

First grayscalemoment contrast binary image
First Grayscale Moment Contrast (FGMC) binary Image
Jμd
Ic is defined as the binary version of the contrast feature
image Ic at global threshold μd:

Jμd
Ic =

{
1 if Ic > μd
0 otherwise (5)

The number of bright pixels in this image describe the
interaction between the brightness and contrast quality
attributes in the observed image.

Problem formulation
Classical quality attributes are generally adopted for sim-
ple images. The report in [60] recognize the need for
better description of quality attributes in complex images.
Contributions in the literature such as [61, 62] adopt
terms such as luminance contrast, texture and texture
contrast to describe quality attributes in specific complex
images. Texture features has been widely applied to dis-
tinguish normal and abnormal structures in MRI images
[63–65].
We regard MRI image as a two-tissue class complex

image. With reference to a T2 weighted MRI slice the
bright pixels describe the high density of edges that
characterize the cortical gray matter and the boundaries
between the different anatomical structures. The white
matter and other anatomical structures other than the
cortical gray matter are described by the dark pixels.
We assume that all the possible distortions in an image

can be condensed into either space-invariant point spread
function or multiplicative spatially varying factor H and
random noise n according to the mathematical model of a
2D image acquisition process [66, 67] expressed by:

Id = HIf + n (6)

where Id is the observed grayscale image and If is the
underlying ideal image. In the absence of distortion and
following the two-tissue class model, the observed image
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and its local contrast feature image are replica of the
underlying ideal image:

Id = Ic = If (7)

Based on Eq. 7 the local contrast feature image and the
observed image will have same pixel intensity level:

μd = μc (8)

We hereby propose four quality scores. They are lumi-
nance contrast, texture, texture contrast and lightness.
Each quality score is derived from the structural matching
of relevant pair of binary feature images. The structural
matching are described as pixel-wise structural matching

and as edge-pixel structural matching. Pixel-wise and
edge-pixel structural matching compares all the corre-
sponding pixels and only edge pixels, respectively in the
foreground of both images.

Luminance contrast quality score
The structural matching between edge pixels in FGMG
and corresponding edge pixels in FCMG expressed as:

q11 = Jμd
Id ∩ Jμc

Id (9)

measures how well the brightness quality attribute can be
used to gauge the contrast quality attribute. This gives the
luminance contrast quality score:

Fig. 1 The flow chart for post-acquisition quality evaluation of a brain MRI slice. Foreground FRG is extracted FRX from the test image TIM. The test
image is rescaled REX so that its pixel intensity levels is between 0 and 1. Two feature images, local contrast feature image CIM and grayscale image
GIM are extracted from the rescaled image RIM. Global thresholding transforms the feature images into four binary feature images (only two BCM
and BGM of the four binary feature images are shown). Determination of quality attributes QAX gives luminance contrast, texture contrast, texture
and lightness quality attributes (only two, FQA and SQA of the four quality attributes are shown). The quality attributes are determined by
matching relevant combinations of the binary feature images. Computation of quality score QSX for each quality attribute gives luminance
contrast, texture, texture contrast and lightness quality scores (only two, FQS and SQS, of the four quality scores are shown). The total quality score
QA is the weighted sum of the scores assigned to each quality attribute
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q1 = nq11

max
(

nJμdId
, nJμcId

) (10)

where nq11 is the number of bright pixels common to both
FGMG and FCMG and the denominator is the highest
number computed from the number nJμdId

, nJμcId
of bright

pixels in both feature images. The number of bright pixels
in both images are compared and used as denominator to
ensure that the quality index q1 ≤ 1.

Texture quality score
The structural matching between edge pixels in FGMC
and corresponding edge pixels in FCMC expressed as

q22 = Jμd
Ic ∩ Jμc

Ic (11)

measures how well the brightness quality attribute can be
used to gauge the texture quality attribute. This gives the
texture quality score:

q2 = nq22
max

(
nJμdIc

, nJμcIc

) (12)

where nq22 is the number of bright pixels common to both
FGMC and FCMC and the denominator is the highest
number computed from the number nJμdIc

, nJμcIc
of bright

pixels in both feature images.

Fig. 2 The different stages of the algorithm for post-acquisition quality evaluation of a brain MRI slice. a The test image has its (b) foreground
extracted. c The test image in (a) has its pixel intensity levels rescaled to lie between 0 and 1. d Grayscale and contrast feature images are extracted
from the test image. Duplicating the rescaled image in (c) extracts the grayscale image at no computational cost. e, f, g and h are the four binary
feature images generated by using the first moments of the feature images in (c) and (d) as global thresholds. i Luminance contrast, texture, texture
contrast, lightness and total quality scores are computed by matching relevant pairs of the feature images in (e), (f), (g) and (h)
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Texture contrast quality score
The pixel-wise structural similarity matching between
FGMC and FCMC expressed as

q33 = Jμd
Ic ∩ Jμc

Ic (13)

gives the texture contrast quality score expressed as:

q3 = nq33
nt

(14)

where nq33 is the number of dark and bright pixels com-
mon to both FGMC and FCMC, and nt is the number
of foreground pixels. In an ideal image where quality dis-
tortions are absent, Eq. 8 holds. Therefore the texture

contrast quality score expressed by Eq. 14 is 1. For real
images, texture contrast quality score is determined by the
disparity between μd and μc.

Lightness quality score
The pixel-wise structural similarity matching between
FGMG and FCMG expressed as

q44 = Jμd
Id ∩ Jμc

Id (15)

gives the lightness quality score expressed as:

q4 = nq44
nt

(16)
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Fig. 3 Six slices with indices (a) 1, (b) 4, (c) 6, (d) 9 , (e) 11 and (f) 14 in a T2 weighted MRI volume data from NeuroRx Research Inc, (g) luminance
contrast, texture, texture contrast, lightness and total quality scores of 14 successive slices in the MRI volume data
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where nq44 is the number of dark and bright pixels com-
mon to both FGMG and FCMG. The disparity between
μd and μc determines the lightness quality score.

Total quality score
The total quality score Q is the weighted sum of the four
quality scores:

Q = wq1q1 + wq2q2 + wq3q3 + wq4q4 (17)

where wq1 ,wq2 ,wq3 ,wq4 are the perceptual weights
assigned to luminance contrast, texture, texture contrast
and lightness quality attributes, respectively.

Implementation
The algorithm was implemented in the MatLab comput-
ing environment. The flow chart of Fig. 1 and the images
displayed in Fig. 2 describe the six steps to implement the
algorithm. The first two steps, foreground extraction and
pixel intensity rescaling are meant to normalize data from
the three different sources.

Step 1 - Foreground extraction
The first task in the implementation of the algorithm is
to extract FRX the foreground FRG shown in Fig. 2b.
The foreground pixels describe the actual anatomical
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Fig. 4 Six slices with indices (a) 1, (b) 4, (c) 8, (d) 11 , (e) 15 and (f) 18 in a T2 weighted MRI volume data from BrainCare Oy, (g) luminance contrast,
texture, texture contrast, lightness and total quality scores of 18 successive slices in the MRI volume data
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structures of the test image TIM shown in Fig. 2a.
Foreground extraction is a very critical step because
the number of foreground pixels are required as input
at step 4 where the binary feature images are gener-
ated and at step 6 for the computation of the quality
scores.

Step 2 - Intensity rescaling
The intensity level of the test image TIM is rescaled REX
to lie between 0 and 1 so that the rescaled test image RIM
in Fig. 2c can be regarded as a blurred version of an ideal
binary image according to the novel work in [68].

Step 3 - Feature image extraction
The rescaled test image RIM is convolved with a local
range filter to extract FEX local contrast feature image
CIM shown in Fig. 2d. The algorithm is sensitive to the
size of filter. Larger filter size causes loss of fine details
while smaller filter size will result in loss of spatial coher-
ence in the filtered image [69]. For the aforementioned
reasons and based on our experience during performance
evaluation of the proposed algorithm we recommended
filter width of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels
for images with dimension comparable to 250 × 250 pix-
els, 350×350 pixels and 450×450 pixels, respectively. The
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Fig. 5 Six slices with indices (a) 1, (b) 4, (c) 6, (d) 9 , (e) 11 and (f) 14 in a T1 weighted MRI volume data from NeuroRx Research Inc., (g) luminance
contrast, texture, texture contrast, lightness and total quality scores of 14 successive slices in the MRI volume data
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mean of the local contrast image is computed with refer-
ence to the foreground pixels. The gray level feature image
GIM is extracted at no computational cost by making a
duplicate copy of the rescaled test image shown in Fig. 2c.

Step 4 - Binary feature images
According to Eqs. 2 - 5 four binary feature images (FGMG,
FCMG, FCMC and FGMC) shown in Fig. 2e, f, g and h,
respectively are generated from the two feature images;
CIM and GIM. In the flow chart the four binary fea-
ture images are represented with two symbols; BCM and
BGM.

Step 5 - Quality attribute
Quality attributes QAX of the test image are determined
from similarity matching of relevant pairs of binary fea-
ture images generated in step 4 according to Eqs. 9, 11, 13
and 15. In the flow chart two symbols FQA, SQA are used
to represent the four quality attributes.

Step 6 - Quality score
Quality score QSX for each quality attribute displayed
in Fig. 2i is computed according to Eqs. 10, 12, 14 and
16. Two symbols FQS, SQS in the flow chart repre-
sent the quality scores. The total quality score QA is
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Fig. 6 Six slices with indices (a) 1, (b) 4, (c) 8, (d) 11 , (e) 13 and (f) 17 in a T1 MPRAGE pulse sequence MRI volume data from ADNI, (g) luminance
contrast, texture, texture contrast, lightness and total quality scores of 17 successive slices in the MRI volume data
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the weighted sum of each quality attribute. The percep-
tual weight assigned to each quality attribute is arbi-
trary but is based on [70] which reports that texture
contrast quality attribute contributes approximately 10
times more to the generation of saliency in natural
scenes than luminance contrast. Throughout the study
the weight assigned to each quality attribute was fixed
as follows; wq1 = 0.1, wq2 = 0.1, wq3 = 0.7 and
wq4 = 0.1.

Results
The images and the tables in this section demonstrate
some results in the six different categories of the objective

and subjective performance evaluation of our proposed
quality evaluation method.

Good Quality T2 MRI Volume Data
Six slices in T2 weighted MRI volume data from Neu-
roRx and BrainCare are shown in Figs. 3a – f and 4a – f,
respectively. The plots in Figs. 3g and 4g are the lumi-
nous contrast, texture, texture contrast, lightness and total
quality scores for 14 and 18 successive slices in the MRI
volume data.

Good Quality T1 MRI Volume Data
The images in Figs. 5a – f and 6a – f are slices in T1
weighted MRI volume data from NeuroRx and ADNI,
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Fig. 7 a A T2 weighted slice degraded by circular averaging filter of radius (b) 5, (c) 8, (d) 10, (e) 13 and (f) 15 pixels. g variation of the luminance
contrast, texture, texture contrast, lightness and total quality scores with blur levels increasing from 1 to 15
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respectively. Their respective luminous contrast, texture,
texture contrast, lightness and total quality scores are
shown in Figs. 5h and 6h, respectively.

Circular Blur
The image in Fig. 7a is a slice from a T2 weightedMRI vol-
ume data from BrainCare. The images shown in Fig. 7b – f
are the same image in Fig. 7a but were blurred with cir-
cular averaging filter of radius 5 pixels, 8 pixels, 10 pixels,
13 pixels and 15 pixels, respectively. The luminous con-
trast, texture, texture contrast, lightness and total quality

scores for blur levels from 1 pixels to 15 pixels are shown
in Fig. 7g.

Motion blur
A slice in a T2 weightedMRI volume data from BrainCare
is shown in Fig. 8a. Its motion blurred versions are shown
in Fig. 8b – f for motion blur levels of 4 pixels, 7 pixels,
9 pixels, 12 pixels and 15 pixels, respectively. The plot of
the motion blur levels from 1 pixels to 15 pixels versus
luminous contrast, texture, texture contrast, lightness and
total quality scores are displayed in Fig. 8g.
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Fig. 8 a A T2 weighted slice and its degraded versions at motion blur levels (b) 5, (c) 8, (d) 10, (e) 13 and (f) 15 pixels, (g) variation of the luminance
contrast, texture, texture contrast, lightness and total quality scores with blur levels increasing from 1 to 15
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Noise
The image in Fig. 9a is a slice in the T2 weighted volume
data from BrainCare. Its Rician noise degraded versions
are shown in Fig. 9b – f for noise levels of 5, 8, 10, 13
and 15%, respectively. The plot of luminous contrast, tex-
ture, texture contrast, lightness and total quality scores for
noise levels from 1 to 15 are displayed in Fig. 9g.

Bias Fields
Six images shown in Fig. 10a – f are slices in a T1
weighted MRI volume data from NeuroRx. They were
originally degraded with different configurations of bias

fields during acquisition stage. The luminous contrast,
texture, texture contrast, lightness and total quality scores
for 14 successive slices in the volume data is shown in
Fig. 10g.

Validation of Results
Results from the subjective evaluation of our proposed
method are tabulated in Tables 2, 3, 4 and 5. In Table 2
are the results for T2 and T1 MRI volume data with-
out perceived distortion as well as T1 volume data that
were originally acquired with bias fields. Tables 3, 4 and 5
are the results for blurring with circular averaging filter,
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Fig. 9 a A T2 weighted slice and its degraded versions at Rician noise levels (b) 5, (c) 8, (d) 10, (e) 13 and (f) 15 percent, (g) variation of the luminance
contrast, texture, texture contrast, lightness and total quality scores with noise levels increasing from 1 to 15
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Fig. 10 Six slices with indices (a) 1, (b) 4, (c) 6, (d) 9, (e) 11, (f) 14 in a T1 weighted MRI volume data degraded by different configurations of bias
fields, (g) luminance contrast, texture, texture contrast, lightness and total quality scores for each slice in the volume data

blurring with motion blur and degradation with Rician
noise, respectively.

Discussion
Evaluation across good quality T2 MRI images
The plots in Figs. 3 and 4 show variation in the quality
scores across slices in the T2 weighted MRI volume data
from NeuroRx and BrainCare, respectively. The lumi-
nance contrast, texture. texture contrast and lightness
quality scores for the images from NeuroRx vary from
0.85 to 0.90, 0.65 to 0.70, 0.40 to 0.50 and 0.50 to 0.60,

respectively. Corresponding quality scores for the images
from BrainCare are 0.90 to 0.95, 0.80 to 0.85, 0.65 to
0.75 and 0.90 to 0.95. The results show that our proposed
method objectively evaluate the variations in image qual-
ity in the slices contained in perceived good quality T2
weighted MRI volume data.

Evaluation across good quality T1 MRI images
The plot in Fig. 5 show that the average luminance con-
trast, texture. texture contrast, lightness and total quality
scores of the slices in the NeuroRx T1 MRI volume data
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Table 2 Validation results for T2 and T1 MRI images without perceived distortion and T1 MRI images degraded by bias fields

MRI volume data Number of
slice

Average
objective score

Average
subjective
score

Objective- subjective
correlation coefficient

Inter-observer
correlation
coefficient

T2 without perceived
distortion

50 0.80 0.70 0.84 0.90

T1 without perceived
distortion

50 0.70 0.60 0.80 0.85

T1 degraded by bias
fields

50 0.40 0.30 0.75 0.75

are 0.80, 0.45, 0.65, 0.70 and 0.50, respectively. Corre-
sponding quality scores for the same type of MRI volume
data from ADNI are 0.82, 0.65, 0.70, 0.80 and 0.70, respec-
tively. Since both data were tagged as good quality images
before the experiment, it can be said that our proposed
method demonstrated good objective evaluation across
slices in perceived good quality T1 weighted MRI data.

Evaluation across poor quality T1 MRI images
The average luminance contrast, texture. texture contrast,
lightness and total quality scores for the images degraded
by different configurations of bias fields are 0.75, 0.30, 0.7,
0.75 and 0.42, respectively (See Fig. 10). A cursory visu-
alization of the six slices in Fig. 10 shows that there is
contrast between the different anatomical structures but
there is evidently loss of edges which is a measure of
details that describe each anatomical structure within the
image. The texture quality score of 0.30 recorded by our
proposed method can be said to be a very good objective
evaluation of the presence of bias field in the image. The
presence of bias field can cause an automated image anal-
ysis system to erroneously misclassify the structures in the
image. The texture quality index of 0.3 recorded by our
proposedmethod can draw the attention of image analysis
experts to carry out restoration on the degraded images
before further processing.

Evaluation across different levels of distortion
The plot in Fig. 7 shows that the total quality score suc-
cessively decrease from 0.95 to 0.15 for circular blur levels
that vary from 1 to 15 in a T2 weighted slice. For the
same slice in Fig. 8 there is an initial increase of total
quality score for motion blur that increase from 1 to 3.

This initial increase in quality score can be attributed to
extraneous features which mimic image details during the
initial introduction of motion blur. Thereafter there is suc-
cessive decrease in quality score from 0.98 to 0.40 for blur
levels that vary from 3 to 15 . The slice in Fig. 9a is the
same slice shown in Figs. 7a and 8a but degraded by Rician
noise level that vary from 1 percent to 15 percent. The
plot in Fig. 9g show successive decrease in total quality
score from 0.85 to 0.42. These results show that our pro-
posed method demonstrate promising performance in the
evaluation of images with different perceptual quality.

Evaluation across different quality attributes
The slice in Fig. 9a is one of the slices in the T2 weighted
volume data shown in Fig. 4. The plot in Fig. 4g indi-
cates that, in the absence of distortion, the average total
quality scores vary from from 0.8 to 0.85. In the presence
of degradation by circular motion blur, motion blur and
noise the average total quality scores varies from 0.95 to
0.15, 0.98 to 0.42 and 0.85 to 0.42. This is an indication
that our proposed method can objectively evaluate differ-
ent quality attributes for different levels of distortion in
an image.

Correlation with subjective evaluation by human observers
The validation results in Tables 2, 3, 4 and 5 show that
our proposed objective method has good correlation with
human visual perception. Correlation between the scores
assigned by the observers varies with the image sequence
and the level of distortion in the images. The validation
results shows that there is a trend of better agreement
between the human observers at lower levels of distor-
tion than at higher levels of distortion. An example is T2

Table 3 Validation results for T2 MRI images degraded by blurring with circular averaging filter

Distortion
level

Number
of slice

Average
objective
score

Average
subjective
score

Objective- subjective
correlation coefficient

Inter-observer
correlation coefficient

0 50 0.80 0.70 0.84 0.85

5 50 0.70 0.70 0.72 0.80

10 50 0.50 0.40 0.75 0.75

15 50 0.30 0.30 0.70 0.65
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Table 4 Validation results for T2 MRI images degraded by blurring with circular motion blur

Distortion
level

Number
of slice

Average
objective
score

Average
subjective
score

Objective- subjective
correlation coefficient

Inter-observer
correlation coefficient

0 50 0.80 0.70 0.84 0.85

5 50 0.70 0.60 0.80 0.85

10 50 0.40 0.30 0.75 0.80

15 50 0.30 0.30 0.70 0.70

MRI images degraded by blurring with circular averag-
ing filter shown in Table 3. In the absence of distortion,
the inter-observer correlation coefficient is 0.85. The cor-
responding inter-observer coefficients for 5, 10 and 15
distortion levels are 0.8, 0.75 and 0.65, respectively. In
Table 2 the correlation coefficient of ρ ≥ 0.80 for MRI
volume data without perceived distortion show that there
is very good correlation between quality scores recorded
by our proposed method and the quality scores assigned
by human observers. There is high correlation of 0.75 for
validation result of T1 weighted volume data that were
originally acquired with bias fields. The validation results
table show that for different levels of circular blur, motion
blur and Rician noise, the inter-observer correlation coef-
ficient ρ ≥ 0.65, and the objective-subjective correlation
coefficient is ρ ≥ 0.60.

Standardization of quality metric
There is a clearly defined lower and upper limit of qual-
ity index. The lower limit is 0 for an extremely degraded
image and upper limit of 1 for an ideal image. Quality
index for a real MRI image lies between 0 and 1. This
quality evaluation index is applied across images derived
from different clinical trial sites, different scanners and
different acquisition protocols. Thus a remarkable charac-
teristic of our proposed method is the standardization of
quality metric.

Cut-off quality index
Our proposed quality metric system predict different
quality scores for different MRI sequences. There are
three reasons to suggest that the cut-off quality metrics
to determine images of acceptable quality should be flexi-
bly applied across differentMRI sequences. First, different

MRI sequences such as T2 and T1 that are without
perceived distortion reveal different levels of structural
information. Second, different MRI sequence images are
acquired for different tasks. This leads to the philosophy
of task-based quality evaluation [71, 72]. Third, it is more
realistic to compare the quality of similar MRI sequence
images acquired for the same task.
The quality measure is applied slice-wise across theMRI

volume data. Generally, quality scores of slices contained
in a MRI volume data lies within a narrow band of quality
index. Based on our experience during the performance
evaluation of our proposed algorithm and with specific
importance to the opinion of human observers we rec-
ommend a cut-off quality index of 0.40 and 0.45 for T1
and T2 weighted MRI images, respectively. Although our
methodology allows the computation of the total quality
score for individual slices we hereby emphasize that the
cut-off quality metric does not suggest rejection of indi-
vidual slices. The recommended cut-off quality metric is
the total quality score computed from the average quality
scores of the slices contained in the MRI volume data.

Absence of comparative performance evaluation
Three characteristics of existing methods makes it dif-
ficult to include comparative performance evaluation in
this report. First, existing methods adopt different distor-
tion models. Second, there are no clearly defined lower
and upper limits of quality indices. Third, there are many
definitions of the popular quality models such as SNR.

Limitations of proposedmethod and future work
Three characteristics of our proposed method limit its
efficacy in real-life scenarios. First, is the two-tissue
class model we adopt for MRI images. It excludes the

Table 5 Validation results for T2 MRI sequence images degraded by Rician noise

Distortion
level

Number
of slice

Average
objective
score

Average
subjective
score

Objective- subjective
correlation coefficient

Inter-observer
correlation coefficient

0 50 0.80 0.70 0.84 0.8

5 50 0.80 0.60 0.70 0.8

10 50 0.70 0.70 0.70 0.75

15 50 0.50 0.40 0.60 0.65
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ventricular system. Themodel assumes that the brain con-
sists of only white matter and cortical gray matter struc-
tures. The fixed perceptual weights assigned to the four
quality attributes throughout the study is a theoretical
approach that is yet to be validated. The third limitation is
that our proposed method predict image quality based on
the assumption that distortion process have same effect
on the different structures of the brain.
Future work will adopt a new model which accounts for

all the three major anatomical structures of the brain. Seg-
mentation algorithm will be incorporated to delineate the
boundaries of the three major anatomical structures so
that quality score prediction will be assigned to region-of-
interest. The perceptual weights assigned to each quality
attributes will be refined based on the subjective scores
from human observers. We will also explore the use of
higher moments as a basis to describe image quality
attributes.

Conclusions
There is increasing clinical interest in the use of brain
MRI images for the study of human anatomy, treatment
and diagnosis of diseases as well as the clinical trials of
drugs for the treatment of neurological diseases. Post-
acquisition image quality evaluation is necessary to re-
evaluate and standardize the quality of brain MRI images
acquired from different clinical trial sites across the globe.
No-reference objective image quality assessment is highly
desired in environment where large volumes of MRI data
are processed. We propose a new method to evaluate
the quality of brain MRI images. The proposed method
will be suitable for fully automated environments because
processing of the quality metrics is on binary images.
Experimental results demonstrates that our proposed
method had good correlation with human visual judge-
ment and gives fairly accurate quality evaluation within
and across good quality images and different levels of
degradation.
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